
Double Higgs Production at the LHC

Matthew Dolan

SLAC National Accelerator Laboratory with Christoph Englert & Michael Spannowsky, 1206.5001, 1210.8166, 1309.6318 (w/ Alan Barr), 1310.1084 (w/ Nico Greiner)

•0000000000000000000

Measuring Higgs Couplings

Things we can measure

- Couplings to fermions: $b\bar{b}$, $t\bar{t}$, $\tau\tau$.
- Couplings to massive VBs: ZZ, WW, VBF, associated production.
- Couplings to massless VBs: $\gamma \gamma$, g-fusion.
- Couplings to itself.

This talk

SM Dihigas

- Can we measure double Higgs production at the LHC?
- Can we measure the Higgs self-coupling at the LHC?
- Can we learn about new physics?

The SM Higgs Lagrangian

SM Dihiggs

0000000000000000000

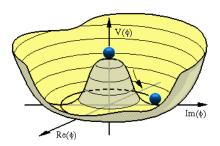
SM Higgs Lagrangian

$$V(H^{\dagger}H) = \mu^2 H^{\dagger}H + \eta(H^{\dagger}H)^2$$

In unitary gauge get

$$\frac{1}{2}m_h^2h^2 + \sqrt{\frac{\eta}{2}}m_hh^3 + \frac{\eta}{4}h^4$$

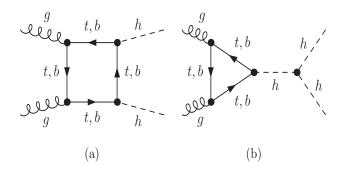
where


$$m_h^2 = \eta v^2/2$$
 $v^2 = -\mu^2/\eta$

Why Think About Self Couplings?

•

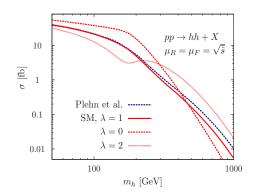
$$\mathcal{L} \supset \frac{1}{2} m_h^2 h^2 + \frac{m_h^2}{2v} h^3 + \frac{m_h^2}{2v^2} h^4$$


- Standard Model trilinear is $\lambda_{SM} = m_h^2/2v$
- Measuring the Higgs self couplings directly probes the structure of the Higgs potential

Effective Lagrangian

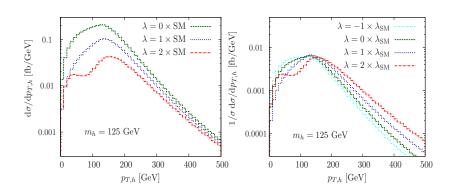
$$\mathcal{L}_{ ext{eff}} = rac{1}{4} rac{lpha_{ ext{s}}}{3\pi} G^a_{\mu
u} G^{a\,\mu
u} \log(1+h/v)$$

$$\mathcal{L}\supset +rac{1}{4}rac{lpha_s}{3\pi v}G^a_{\mu
u}G^{a\,\mu
u}h-rac{1}{4}rac{lpha_s}{6\pi v^2}G^a_{\mu
u}G^{a\,\mu
u}h^2$$



Effective Lagrangian

$$\mathcal{L}_{ ext{eff}} = rac{1}{4} rac{lpha_s}{3\pi} G_{\mu
u}^{ extsf{a}} G^{ extsf{a}\,\mu
u} \log(1+h/v)$$

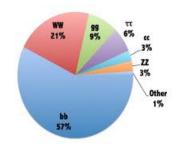

$$\mathcal{L} \supset + rac{1}{4} rac{lpha_{\mathcal{S}}}{3\pi v} G^a_{\mu
u} G^{a\,\mu
u} h - rac{1}{4} rac{lpha_{\mathcal{S}}}{6\pi v^2} G^a_{\mu
u} G^{a\,\mu
u} h^2$$

- Interference effects important.
- Fails to reproduce full kinematics when $Q^2 \gtrsim m_t^2$

- LO: 16 fb (~ 1500 times smaller than single Higgs production)
- $\bullet~$ NLO: 33 \pm 5 fb. NNLO: 40 \pm 3.5 fb
- Diagram (b) resonantly enhanced when $s \simeq 4m_t^2$

p_T distributions

- Naturally boosted $p_{T,h} \gtrsim 100 \text{ GeV}$
- Max sensitivity at $p_{T,h} \sim 100 \text{ GeV}$

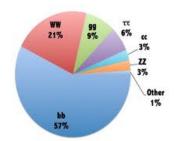

Hunting for a Higgs

SM Dihigas

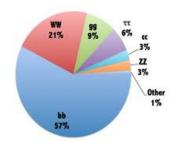
- The Higgs is unstable and decays
- Need to hunt for its decay products and reconstruct it from them

- Largest branching ratio bb
 difficult to observe due to
 large background
- $\gamma\gamma$ and $ZZ \rightarrow 4I$: Low BR but low backgrounds (discovery modes)
- WW and ττ: Also measured already at 8 TeV

Higgs decays at m_H=125GeV



SM Dihiggs


Balance between

- Having as much pie as possible
- Pie slice is easy to find

Higgs decays at m_H=125GeV

Higgs decays at m_H=125GeV

Search strategies

SM Dihigas

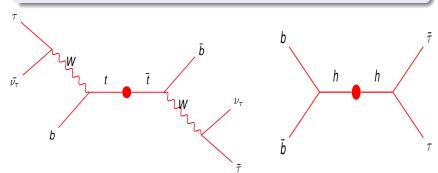
- $hh \rightarrow W^+W^-W^+W^-$: 21 and 31 cases studied, no constraints when $m_h \lesssim 2m_W^a$
- $bb\gamma\gamma$: Constraints possible with a lot of luminosity^b
- Claim 40% uncertainty on λ_{bhh} with 3ab⁻¹
- Suffers from small $BR(h \rightarrow \gamma \gamma)$

bb $\gamma\gamma$: From ATLAS Hi-Lumi Study (Withdrawn!)

"On applying this selection, a signal yield of approximately 11 is obtained, with ttH being the dominant background, contributing approximately 14 events."

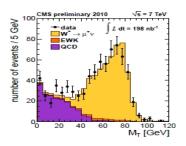
^aBaur et al 2003

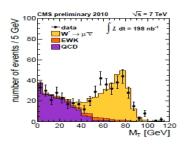
^bBaur et al 2003, Barger et al 2013

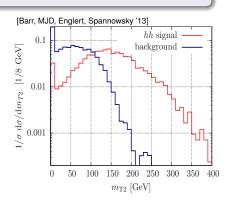

Unboosted and Boosted searches

Strategy

- Small cross-section: $\sigma^{NLO}(hh) = 28.4$ fb.
- So focus on largest branching ratios: bb (60%), WW (20%), $\tau\tau$ (6%).
- Unboosted bbbb, bbWW: Not possible due to 4b and $t\bar{t}$ backgrounds.

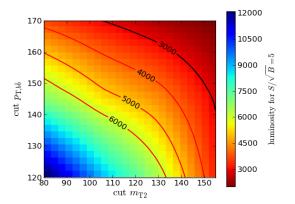

	$\lambda = 1$	bbWW	ratio to $\lambda = 1$
1 isolated lepton	3.76	254897	$1.5 \cdot 10^{-5}$
MET + jet cuts	0.85	66595	$1.2 \cdot 10^{-5}$
had-W recon	0.33	38153	$0.9 \cdot 10^{-5}$
kinematic Higgs recon	0.017	205	$8.3 \cdot 10^{-5}$


- We want to keep as much pie as possible
- $bb\tau\tau$: Can exploit kinematic differences between signal and $t\bar{t}$ background.


Reconstructing Semi-Invisible Particle Decays

- $M_T^2 = 2E_{T,1}E_{T,2}(1 \cos \phi)$ (for massless daughters)
- Satisfies $M_T < M_X$

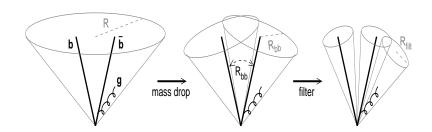
- Can generalise transverse mass to pair production: m_{T2}
- $\bullet \ m_{\text{T2}} = \min_{\mathbf{c}_{\text{T}} + \mathbf{c}_{\text{T}}' = \mathbf{p}_{\text{T}}^{\Sigma}} \left\{ \max \left(m_{\text{T}}, m_{\text{T}}' \right) \right\}$
- Take b's as visible particles, and $p_{T,W} + p_{T,W'}$ as 'invisible momentum'
- m_{T2} constructed from momenta of t decay products and $p_{\rm T}$ has maximum at m_t
- Not the case for signal
- Also use $p_{T,b\bar{b}}$


DiHiggs:some results

Analysis results

cross section [fb]	hh	S/B		
Before cuts	13.89	1.06×10^{-3}		
After trigger	1.09	0.463×10^{-3}		
After event selection	0.248	0.578×10^{-3}		
After $m(\tau^+\tau^-)$ cut	0.164	1.46×10^{-3}		
After $m(b\bar{b})$ cut	0.118	3.98×10^{-3}		
After $p_{\mathrm{T},b\bar{b}} > 175 \mathrm{GeV}$ cut	0.055	0.105		
After $m_{\mathrm{T2}} >$ 125 GeV cut	0.047	0.250		

Comments


- Corresponds to $\sim 60\%$ sensitivity to λ_{SM} with $3000 {\rm fb}^{-1}$ LHC
- Can still be further optimised: substructure etc.
- Can gain further sensitivity using *hh* + 1j final state
- Being studied by ATLAS and CMS

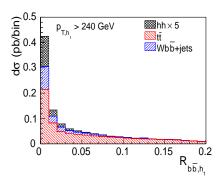
• Luminosity in fb⁻¹ required for $S/\sqrt{B} = 5$

Exploit kinematics II

- Signal has $b\bar{b}$ and $\tau\bar{\tau}$ systems approximately back-to-back
- $t\bar{t}$ background more likely to have collimated $b\tau$
- Ideal place to use jet substructure techniques

Boosted Kinematics: (BDRS)2

	$\lambda = 1$	bbbb [QCD]	ratio to $\lambda = 1$
x-sec pre-cuts	28.42	21342	1.3 ⋅ 10 ⁻³
fatjet cuts	8.23	4800	$1.7 \cdot 10^{-3}$
1 st Higgs rec+2b	1.02	237.3	$4.2 \cdot 10^{-3}$
2 nd Higgs rec+2b	0.094	9.78	$9.6 \cdot 10^{-3}$


Comments

- Can gain sensitivity in main decay channels.
- Can think about $b\bar{b}WW$ and $b\bar{b}\tau\bar{\tau}$ again

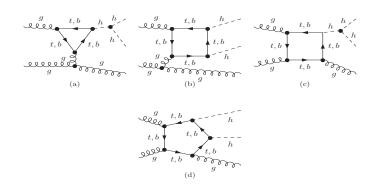
Boosted bbW+W-1

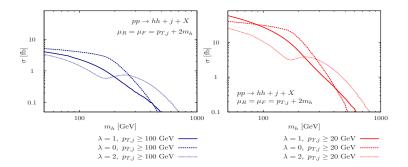
00000000000000000000

- BDRS cuts on $b\bar{b}$, 1 leptonic W, 1 hadronic.
- 4.6 signal, 2.6 background events in 600 fb⁻¹
- Requires cut on R_{bbh}

¹Papaefstathiou, Yang, Zurita, 1209.1489

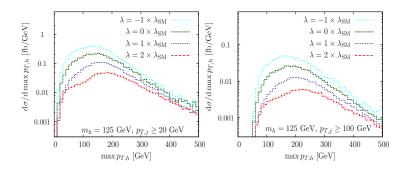
00000000000000000000


Higgs reconstruction


- Two hadronic taus reconstructing m_h
- One fatjet with BDRS cuts reconstructing m_h

	$\lambda = 1$	$b\bar{b} au au$ (BG)	ratio to $\xi = 1$
x-section pre-cuts	28.34	873076	$3.2 \cdot 10^{-5}$
Higgs from τ s	1.94	1512	$1.3 \cdot 10^{-3}$
fatjet cuts	1.09	225	$4.8 \cdot 10^{-3}$
Higgs rec & tags	0.095	0.15	0.49

- Expect 95 signal events with 1000fb⁻¹ in SM.
- Expect 148 events for $\lambda = 0$; 53 events for $\lambda = 2$.


- Want to decorrelate $p_{T,h}$ with suppression of triangle diagram
- Motivates studying $pp \rightarrow hh + j$

- Left: $p_{T,j} > 100$ GeV. Right: $p_{T,j} > 20$ GeV
- Large dependence on λ : $\Delta \sigma/\sigma_{SM} \simeq 100\%$ for $\lambda \in [0, 2\lambda_{SM}]$
- Compare $\Delta \sigma/\sigma_{SM} \simeq 45\%$ for $pp \to hh$.
- Cost in cross-section: $\sigma(pp \to hh + j) \simeq \text{few fb}^{-1}$

Comments on $pp \rightarrow hh + 1j$

- Sensitivity to λ comes from configs with two Higgs bosons close to each other and central.
- Hadronic decay products may overlap \rightarrow to reconstruct hh system rely on substructure techniques.

Results for $b\bar{b}\tau\tau j$ and $b\bar{b}b\bar{b}j$

- $b\bar{b}b\bar{b}j$: S/B still $\sim 10^{-3}$
- S/B improves relative to $bb\tau\tau$
- But cross-section very small.

fb	$\xi = 1$	$b\bar{b} au^+ au^-j$ (BG)	ratio to $\xi = 1$
x-sec precuts	3.24	174	1.9 · 10 ⁻²
2~ aus	0.22	45	$4.8 \cdot 10^{-3}$
$m_{ au au}pprox m_h$ + fatjet	0.16	3.1	$5.1 \cdot 10^{-2}$
kin. Higgs rec. + 2b	0.04	0.153	0.26
<i>hh</i> inv.		•	•
mass + $p_{T,j}$ cuts	0.006	0.0037	1.54

Why study hh + 2j? When will this ever end?

- Leading process sensitive to W⁺W⁻hh and ZZhh interactions through vector boson fusion
- ullet Given by $g_{WWhh}=e^2/(2s_w^2)$ and $g_{ZZhh}=e^2/(2s_w^2c_w^2)$

But...

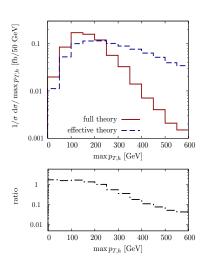
SM Dihiggs

• This process also gets contributions from gluon fusion at $\mathcal{O}(\alpha_s^4\alpha^2)$ which must be calculated and kept under control

Calculating the gluon fusion component

What about our old friend?

SM Dihigas


$$\mathcal{L}_{ ext{eff}} = rac{1}{4} rac{lpha_{ extsf{s}}}{3\pi} G^a_{\mu
u} G^{a\,\mu
u} \log(1+h/v)$$

Momentum transfers are again $p_{T,h} \sim m_t$ and so kinematic information is lost when $m_t \to \infty$

- Need to incorporate full loop contributions
- This is challenging, particularly for the $gg \rightarrow hhgg$ case with 1000 Feynman diagrams: up to 1 minute per phase space point
- Not promising for traditional Monte Carlo approaches
- Instead opt for a reweighting procedure

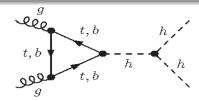
Reweighted vs. EFT

SM Dihiggs

Comments

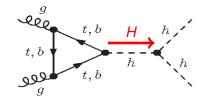
- Shows $p_{T,h_{max}}$ from $gg \rightarrow hhgg$
- Similar behaviour as in hh and hhj production
- At large momentum transfers massive quark loops are resolved and EFT overestimates

Results


SM Dihiggs

Analysis cuts

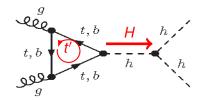
- Require $p_{T,i} > 25$ GeV and $|\eta_i| < 4.5$
- Require two b jets, and two extra (non- τ jets)
- No m_{T2} -based cuts or MET-based cuts used \rightarrow room for optimisation


	Signal with $\xi imes \lambda$		Background		S/B	
	$\xi = 0$	$\xi = 1$	$\xi=2$	tījj	Other BG	ratio to $\xi = 1$
tau selection cuts	0.212	0.091	0.100	3101.0	57.06	0.026×10^{-3}
Higgs rec. from taus	0.212	0.091	0.100	683.5	31.92	0.115×10^{-3}
Higgs rec. from b jets	0.041	0.016	0.017	7.444	0.303	1.82×10^{-3}
2 tag jets	0.024	0.010	0.012	5.284	0.236	1.65×10^{-3}
incl. GF after cuts/re-weighting	0.181	0.099	0.067	5.284	0.236	1/61.76

- What is the relevance of this for Beyond the Standard Model physics?
- How can BSM physics alter SM di-higgs phenomenology?

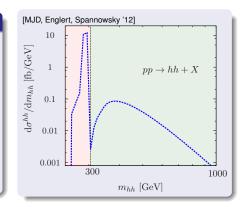
Resonant

- New (on-shell) resonances
- Two-Higgs doublet models (supersymmetry)
- Higgs-portal models
- Composite models with hh resonances


Resonant

SM Dihiggs

- New (on-shell) resonances
- Two-Higgs doublet models (supersymmetry)
- Higgs-portal models
- Composite models with hh resonances


Non-Resonant

- Models with heavy top-partners
- Composite Higgs models
- Pseudo-dilaton models

Resonant: SUSY

- $H \rightarrow hh$ can be dominant decay channel!
- Happens for low tan β
- Can separate SM and BSM contributions with m_{hh} cut
- Allows to bound/reconstruct tan β

Supersymmetry at low tan β

- For tan $\beta \sim$ 2 3 and 2 $m_h < m_H <$ 2 m_t , H has a large BR $H \rightarrow hh$.
- Can happen in NMSSM with moderate λ , splittish SUSY scenarios.

$$\begin{split} \lambda_{hhh} &= 3\cos 2\alpha \, \sin(\beta + \alpha) \\ \lambda_{Hhh} &= 2\sin 2\alpha \, \sin(\beta + \alpha) - \cos 2\alpha \, \cos(\beta + \alpha) \end{split}$$

- Way to reconstruct α and $\beta = v_u/v_d$
- $m_H = 290$ GeV, $\sigma(pp \rightarrow hh) = 246$ fb, $BR(H \rightarrow hh) = 47\%$

$\Phi_H^{\dagger}\Phi_H$ is a singlet

Higgs Portal Potential:

$$V = m_H^2 |\Phi_H|^2 + \lambda_H |\Phi_H|^4 + m_S^2 |\Phi_S|^2 + \lambda_S |\Phi_S|^4 + \eta_X |\Phi_H|^2 |\Phi_S|^2$$

- Φ_S a hidden sector Higgs field
- Visible and hidden sector Higgses mix:

$$h = \cos \chi H_s + \sin \chi H_h$$

$$H = -\sin \chi H_s + \cos \chi H_h,$$

Variety of trilinears to possibly study: hhh, Hhh, HHH, HHH

SM Dihiggs

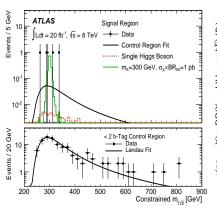
Cross-sections

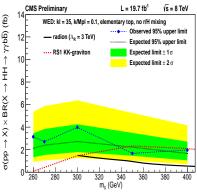
Visible and hidden sector Higgses mix:

$$h = \cos \chi H_s + \sin \chi H_h$$

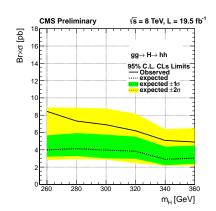
$$H = -\sin \chi H_s + \cos \chi H_h,$$

- $m_h = 125 \text{ GeV}, m_H = 255 \text{ GeV}$
- Find cross-sections:


$$pp \rightarrow hh + X$$
 : 44.4 fb (1a)


$$pp \rightarrow Hh + X$$
 : 5.57 fb (1b)

$$pp \rightarrow HH + X$$
 : 667 ab (1c)


•
$$\sigma(pp \to hh + j) = 10.1 \text{ fb}, p_{T,j} > 80 \text{ GeV}$$

Pot Stirring: $H \rightarrow hh \rightarrow bb\gamma\gamma$

Pot Stirring: CMS $H \rightarrow hh$ multileptons

Pseudo-Nambu-Goldstoneism

- Strong interactions can provide a (partial) cure to the naturalness problem
- Need a light scalar degree of freedom
- Can happen if PNG of some broken symmetry

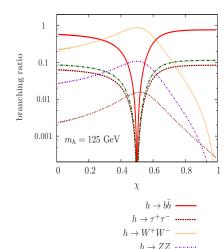
Examples

SM Dihiggs

- Pseudo-dilaton (PNG of scale symmetry)
- Composite Higgs

Composite Higgs

SM Dihiggs


 Gauge EW interactions as subgroup of larger broken symmetry group e.g.

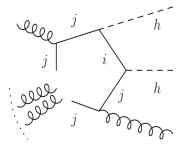
$$SO(5) \to SO(4) \simeq SU(2)_L \times SU(2)_R$$

- NG bosons which arise from symmetry breaking get masses from Coleman-Weinberg
- Deviations from SM behaviour measured by $\xi = v/f$, $f \sim$ pion decay constant

Composite Higgs BRs

SM Dihiggs

h o gg --- $h \rightarrow \gamma \gamma$

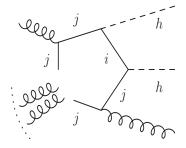

Comments

- Can have highly modified branching ratios relative to SM
- We tooks $\xi = 0.25$ for our study
- This value was allowed in late 2012

SM Dihiggs

Generated by mixing operators

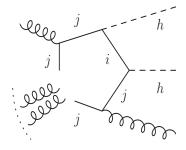
- Get non-diagonal interactions f_if_ih and f_if_ihh
- Non-SM trilinear $L_h \supset \frac{1-2\xi}{\sqrt{1-\xi}} h^3$
- Top-partners in loop



Composite Higgs Phenomenology

Cross-sections

SM Dihiggs


- Cross-section increased by 3 − 4×SM
- σ enhanced at high p_T due to new fermions

SM Dihiggs

Comparison with Standard Model

- Get $\sigma(pp \rightarrow hh + j) = 13$ fb for $p_{T,j} > 80$ GeV $4.6 \times \sigma_{SM}$
- Would correspond to $S/B \simeq 7$ for $bb\tau\tau + j$ search considered earlier

Summary

Standard Model

- Trilinear coupling a crucial measurement of EWSB
- Good prospects in boosted $bb\tau\tau$, boosted $bb\tau\tau+j$ final states
- Can also use $bb\gamma\gamma$ and maybe bbWW
- Possible lifetime measurement of λ_{hhh}^{SM} to 30-50% accuracy?
- Prospects at 100 TeV machine?

Beyond the Standard Model

 Large resonant and non-resonant enhancements possible in a variety of models

Backups

Modified tagger

- Hadronically more active final state
- Undo clustering, if $m_{j_1} > 0.8 m_j$ discard m_{j_2} , else keep both.
- If $m_{j_i} < 30$ GeV, add to list of substructures, else further decompose.
- Do filtering
- Keep three hardest filtered subjets.
- Call two hardest filtered subjets with mass closest to 125 GeV a Higgs candidate and b-tag